INTERNATIONAL A LEVEL

Statistics 3 Solution Bank

Chapter Review 4

1 By the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(5, \frac{1}{100}\right)$, i.e. $\bar{X} \approx \sim \mathrm{~N}(5,0.01)$

$$
\mathrm{P}(\bar{X}>5.2)=1-\mathrm{P}(\bar{X}<5.2) \approx 1-0.9772=0.0228 \text { (4 d.p.) }
$$

$2 \mathrm{E}(X)=\frac{1}{6}(1+2+4+5+7+8)=\frac{27}{6}=4.5$
$\operatorname{Var}(X)=\frac{1}{6}\left(1+2^{2}+4^{2}+5^{2}+7^{2}+8^{2}\right)-4.5^{2}$

$$
=\frac{159}{6}-\frac{729}{36}=\frac{225}{36}=\frac{25}{4}=6.25
$$

By the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(4.5, \frac{6.25}{20}\right)$, i.e. $\bar{X} \approx \sim \mathrm{~N}(4.5,0.3125)$
$\mathrm{P}(\bar{X}<4) \approx 0.1855$ (4 d.p.)
$3 \quad X \sim \mathrm{~N}(1,1)$ and by the central limit theorem $\bar{X} \sim \mathrm{~N}\left(1, \frac{1}{\sqrt{n}}\right)$
Standardise the sample mean.
$\mathrm{P}(\bar{X}<0)=\mathrm{P}(Z<-\sqrt{n})$ and so require $\mathrm{P}(Z>-\sqrt{n})<0.05$
Using the table for the percentage points of the normal distribution:
$\mathrm{P}(Z=-1.645)=0.05$
$\Rightarrow-\sqrt{n}<-1.645$
$\Rightarrow n>2.706$
So minimum sample size is $n=3$ for the probability of a negative sample mean being less than 5%
4 Let the random variable X denote the number of sixes thrown by a student in 10 rolls of the dice, so $X \sim B\left(10, \frac{1}{6}\right)$
$\mathrm{E}(X)=n p=10 \times \frac{1}{6}=\frac{5}{3}$
$\operatorname{Var}(X)=n p(1-p)=\frac{5}{3} \times \frac{5}{6}=\frac{25}{18}$
By the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(\frac{5}{3}, \frac{25}{18 \times 20}\right)$, i.e. $\bar{X} \approx \sim \mathrm{~N}\left(\frac{5}{3}, \frac{5}{72}\right)$
$\mathrm{P}(\bar{X}>2)=1-\mathrm{P}(\bar{X}<2) \approx 1-0.8970=0.1030$ (4 d.p.)
5 a Let X be the number of buses that arrive in a 10-minute period, then $X \sim \operatorname{Po}(2)$

$$
\mathrm{P}(X=3)=\frac{\mathrm{e}^{-2} 2^{3}}{3!}=0.1804 \text { (4 d.p.) }
$$

INTERNATIONAL A LEVEL

Statistics 3

5 b Let T be the number of buses that arrive in a two-hour period, so $T=12 \bar{X}$
By the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(2, \frac{2}{12}\right)$, i.e. $\bar{X} \approx \sim \mathrm{~N}\left(2, \frac{1}{6}\right)$
$\mathrm{P}(T \geqslant 25)=\mathrm{P}\left(\bar{X} \geqslant \frac{25}{12}\right)$
$\mathrm{P}\left(\bar{X} \geqslant \frac{25}{12}\right)=1-\mathrm{P}\left(\bar{X}<\frac{25}{12}\right) \approx 1-0.5809=0.4191$ (4 d.p.)

6 a Let the random variable X be the mass of an egg, then $X \sim \mathrm{~N}(60,25)$ and $\bar{X} \sim \mathrm{~N}\left(60, \frac{25}{48}\right)$ $\mathrm{P}(\bar{X}>59)=1 \quad \mathrm{P}(\bar{X}<59)=1 \quad 0.0829=0.9171$ (4 d.p.)
b The answer in part a is not an estimate because the sample is taken from a population that is normally distributed.
c Let the random variable Y is the number of double yolk eggs in a crate of 48 eggs, so
$Y \sim \mathrm{~B}(48,0.1)$
$\mathrm{E}(Y)=n p=48 \times 0.1=4.8$
$\operatorname{Var}(Y)=n p(1-p)=4.8 \times 0.9=4.32$
By the central limit theorem $\bar{Y} \approx \sim \mathrm{~N}\left(4.8, \frac{4.32}{30}\right)$, i.e. $\bar{Y} \approx \sim \mathrm{~N}(4.8,0.144)$
The probability that the sample of 30 crates will contain fewer than 150 double-yolk eggs is $\mathrm{P}(\bar{Y}<5)$ as $30 \times 5=150$
$\mathrm{P}(\bar{Y}<5) \approx 0.7009$ (4 d.p.)
7 Consider a sample of 100 cups of coffee, so $\bar{S} \sim \mathrm{~N}(4.9,0.0064)$. One pack of milk powder will be sufficient, if $100 \bar{S}<500$, i.e. $\bar{S}<5$
$\mathrm{P}(\bar{S}<5)=0.8944$ (4 d.p.)

Statistics 3

8 Let the random variable be X, so by the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(40, \frac{9}{n}\right)$
Required to find minimum n such that $\mathrm{P}(\bar{X}>42)<0.05$
Standardise the sample mean using $Z=\frac{\bar{X}-\mu}{\sigma}, \mu=40$ and $\sigma=\frac{3}{\sqrt{n}}$
So for $\bar{X}=42, Z=\frac{(42-40) \sqrt{n}}{3}=\frac{2 \sqrt{n}}{3}$ and $\mathrm{P}(\bar{X}>42)=\mathrm{P}\left(Z>\frac{2 \sqrt{n}}{3}\right)$
Using the table for the percentage points of the normal distribution;
$\mathrm{P}(Z>1.6449)=0.05$
So $\frac{2 \sqrt{n}}{3}>1.6449$
$\Rightarrow \sqrt{n}>2.46735$
$\Rightarrow n>6.0878 \ldots$
So $n=7$ is the minimum sample size required for $\mathrm{P}(\bar{X}>42)<0.05$

9 Let the random variable be X, so by the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(35, \frac{9}{20}\right)$ $\mathrm{P}(\bar{X}>37)=1-\mathrm{P}(\bar{X}<37) \approx 1-0.9986=0.0014$ (4 d.p.)

10a The table describes the distribution of X

\boldsymbol{x}	0	1
$\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})$	0.4	0.6

$$
\mathrm{E}(X)=0.6, \operatorname{Var}(X)=0.6-0.6^{2}=0.24
$$

b By the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(0.6, \frac{0.24}{500}\right)$, i.e. $\bar{X} \approx \sim \mathrm{~N}(0.6,0.00048)$

$$
\begin{aligned}
\mathrm{P}(\bar{X}>0.63)+\mathrm{P}(\bar{X}<0.57) & =1-\mathrm{P}(\bar{X}<0.63)+\mathrm{P}(\bar{X}<0.57) \\
& \approx 1-0.91454+0.08545=0.1709 \text { (4 d.p.) }
\end{aligned}
$$

Statistics $3 \quad$ Solution Bank

10 c Required to find minimum n such that $\mathrm{P}(0.57<\bar{X}<0.63)>0.95$
Standardise the sample mean using $Z=\frac{\bar{X}-\mu}{\sigma}, \mu=0.6$ and $\sigma=\sqrt{\frac{0.24}{n}}$
So for $\bar{X}=42, Z=\frac{(42-40) \sqrt{n}}{3}=\frac{2 \sqrt{n}}{3}$ and $\mathrm{P}(\bar{X}>42)=\mathrm{P}\left(Z>\frac{2 \sqrt{n}}{3}\right)$
So require $\mathrm{P}\left(-\frac{0.03 \sqrt{n}}{\sqrt{0.24}}<Z<\frac{0.03 \sqrt{n}}{\sqrt{0.24}}\right)>0.95$
$\Rightarrow 1-2 \mathrm{P}\left(Z<-\frac{0.03 \sqrt{n}}{\sqrt{0.24}}\right)>0.95 \quad$ (by the symmetry of the normal distribution)
$\Rightarrow \mathrm{P}\left(Z<-\frac{0.03 \sqrt{n}}{\sqrt{0.24}}\right)<0.025$
Using the table for the percentage points of the normal distribution
$\mathrm{P}(Z<-1.960)=0.025$
$\Rightarrow-\frac{0.03 \sqrt{n}}{\sqrt{0.24}}<-1.960$
$\Rightarrow \sqrt{n}>\frac{1.960 \times \sqrt{0.24}}{0.03} \Rightarrow \sqrt{n}>32.0066 \ldots$
$\Rightarrow n>1024.42 .$.
So $n=1025$

Statistics 3 Solution Bank

11 The sample of bands from the new supplier has
$\bar{x}=\frac{\sum X}{100}$
$=\frac{4715}{100}$
$=47.15$
and
$s^{2}=\frac{\sum X^{2}}{100}-\left(\frac{\sum X}{100}\right)^{2}$

$$
=\frac{222910}{100}-47.15^{2}
$$

$$
=5.978
$$

$s=2.445$
$\mathrm{H}_{0}: \mu=46.5$
$\mathrm{H}_{1}: \mu>46.5$
Using the estimator above for s, under the null hypothesis the distribution of the mean breaking stress of a sample of 100 bands can be modelled as $\mathrm{N}\left(46.5, \frac{(2.445)^{2}}{100}\right)$
The probability a sample of 100 bands having a mean breaking stress of at least 47.15 is

$$
Z=\frac{47.15-46.5}{\frac{2.445}{10}}=2.659
$$

$2.659>1.645$
Therefore, there is evidence that the new manufacturer's bands are stronger.

12

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}}$	f	$f x$	$f \boldsymbol{x}^{\mathbf{2}}$
12	144	5	60	720
13	169	42	546	7098
14	196	210	290	41160
15	225	31	465	6975
Totals			$\mathbf{3 0 0}$	$\mathbf{4 2 0 5}$
	$\mathbf{5 9 0 2 5}$			

$$
\begin{aligned}
\bar{x} & =\frac{\sum f x}{\sum f} \\
& =\frac{4203}{300} \\
& =14.01 \mathrm{mg} \\
s^{2} & =\frac{\sum X^{2}}{100}-\left(\frac{\sum X}{100}\right)^{2} \\
& =\frac{59025}{300}-\left(\frac{4203}{300}\right)^{2} \\
& =196.75-196.2801 \\
& =0.4699
\end{aligned}
$$

The variance of the mean is therefore $\frac{0.4699}{300}$
And the standard error is $\sqrt{\frac{0.4699}{300}}=0.0396$

Statistics 3

$13 \mathrm{~N}\left(\mu_{A}-\mu_{B}, \frac{8.0^{2}}{25}+\frac{8.0^{2}}{20}\right)$
$\mathrm{H}_{0}: \mu_{A}-\mu_{B}=0$
$\mathrm{H}_{0}: \mu_{A}-\mu_{B}>0$

$$
\begin{aligned}
\mathrm{Z}_{\text {Test }} & =\frac{\bar{X}_{A}-\bar{X}_{B}-0}{8.0 \sqrt{\frac{1}{25}+\frac{1}{20}}} \\
& =\frac{44.2-40.9}{8.0 \sqrt{\frac{1}{25}+\frac{1}{20}}} \\
& =1.375
\end{aligned}
$$

$\mathrm{Z}_{\text {Test }}=1.375<\mathrm{Z}_{\text {Crit }}=1.645$
There is no evidence for a difference in means between the two schools.
$14 \mathrm{H}_{0}: \mu_{2010}=£ 9.10$
$\mathrm{H}_{1}: \mu_{2010}>£ 9.10$
For the random sample of 100 individual sales of unleaded fuel in 2010, the mean is 9.71 and the standard deviation is $\frac{3.25}{\sqrt{100}}$
$Z_{\text {Test }}=\frac{9.71-9.10}{\left(\frac{3.25}{\sqrt{100}}\right)}$
$=1.8769$
$\mathrm{Z}_{\text {Test }}=1.8769>\mathrm{Z}_{\text {Crit }}=1.645$
Therefore, there is evidence that the 2010 sales of unleaded are higher than the 2009 sales of unleaded.

INTERNATIONAL A LEVEL

Statistics 3

15 a $H_{0}: \mu_{\text {Drive }}-\mu_{\text {Walk }}=0$
$\mathrm{H}_{1}: \mu_{\text {Drive }}-\mu_{\text {Walk }}=0$

$$
\begin{aligned}
Z_{\text {Test }} & =\frac{\bar{X}_{\text {Drive }}-\bar{X}_{\text {Walk }}}{\sqrt{\frac{\text { Var }_{\text {Drive }}}{n_{\text {Drive }}}+\frac{\text { Var }_{\text {Walk }}}{n_{\text {Walk }}}}} \\
& =\frac{52-47}{\sqrt{\frac{60.2}{30}+\frac{55.8}{36}}} \\
& =2.651
\end{aligned}
$$

$\mathrm{Z}_{\text {Test }}=2.651>\mathrm{Z}_{\text {Crit }}=1.645$
Therefore, there is evidence that those who drive to work have a higher heart rate.
b Assume normal distribution or assume sample sizes large enough to use the central limit theorem; assume individual results are independent; assume $\sigma_{2}=s_{2}$ for both populations.
c $\bar{X}_{\text {Drive }}=52$
$\sum X=1560$
$s^{2}=60.2$
$\sum X^{2}=s^{2}(n-1)+n \bar{X}_{\text {Drive }}=82865.8$
$\sum X_{\mathrm{New}}=1560+55=1615$
$\sum X_{\text {New }}^{2}=82865+55^{2}=\overline{8589} 0.8$
Therefore, we can calculate the unbiased estimator of the variance of the new sample using these values to find
$\xi_{\text {New }}^{2}=58.5$

Challenge

$X_{1}+\ldots+X_{n} \sim \mathrm{~N}\left(n \mu, n \sigma^{2}\right)$ and so
$\bar{X}=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right) \sim \mathrm{N}\left(\frac{n \mu}{n}, \frac{n \sigma^{2}}{n^{2}}\right)=\mathrm{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$

